Architecture

Technical architecture overview

SynThera System Architecture

SynThera's architecture is built on modern cloud-native principles, designed for scalability, reliability, and security. Our microservices-based system leverages advanced AI/ML pipelines to deliver real-time clinical intelligence while maintaining HIPAA compliance and enterprise-grade performance.

Key Architectural Principles

  • • Cloud-native microservices
  • • Event-driven architecture
  • • Zero-trust security model
  • • Auto-scaling infrastructure
  • • Multi-region deployment
  • • API-first design

High-Level System Overview

SynThera Platform Architecture


┌─────────────────────────────────────────────────────────────────────┐
│                          Client Applications                         │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐ │
│  │   Web App   │  │  Mobile App │  │  EHR Plugin │  │  API Client │ │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
                                    │
                                ┌───▼───┐
                                │  CDN  │
                                └───┬───┘
                                    │
┌─────────────────────────────────────────────────────────────────────┐
│                            API Gateway                              │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐ │
│  │    Auth     │  │Rate Limiting│  │  Routing    │  │  Monitoring │ │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
                                    │
┌─────────────────────────────────────────────────────────────────────┐
│                         Core Microservices                         │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐ │
│  │  Clinical   │  │    Voice    │  │   Imaging   │  │    FHIR     │ │
│  │  Analysis   │  │ Processing  │  │  Analysis   │  │ Integration │ │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘ │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐ │
│  │   Patient   │  │    Risk     │  │    Lab      │  │  Workflow   │ │
│  │    Data     │  │ Assessment  │  │Integration  │  │   Engine    │ │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
                                    │
┌─────────────────────────────────────────────────────────────────────┐
│                         AI/ML Infrastructure                       │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐ │
│  │   Model     │  │  Training   │  │ Inference   │  │  Knowledge  │ │
│  │ Repository  │  │  Pipeline   │  │   Engine    │  │    Graph    │ │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
                                    │
┌─────────────────────────────────────────────────────────────────────┐
│                           Data Layer                               │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐ │
│  │   Primary   │  │   Search    │  │    Cache    │  │   Object    │ │
│  │  Database   │  │   Engine    │  │    Layer    │  │   Storage   │ │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
Client Layer

Multi-platform client applications and integrations

API Gateway

Authentication, routing, and traffic management

Microservices

Domain-specific business logic and processing

Data Layer

Persistent storage and caching infrastructure

Core Microservices

Clinical Analysis Service

Core AI engine for patient data analysis and clinical decision support.

Technologies: Python, TensorFlow, PyTorch, FastAPI
• Multi-modal data processing
• Real-time risk assessment
• Specialty-specific models

Voice Processing Service

Advanced speech recognition and natural language processing for medical content.

Technologies: Whisper, spaCy, BERT, WebRTC
• Real-time transcription
• Medical entity extraction
• SOAP note generation

Imaging Analysis Service

AI-powered medical imaging analysis and interpretation.

Technologies: MONAI, PyTorch, DICOM, OpenCV
• Multi-modality support
• Anomaly detection
• Measurement tools

FHIR Integration Service

Healthcare data interoperability and EHR integration.

Technologies: HAPI FHIR, HL7, Node.js
• FHIR R4 compliance
• Data transformation
• EHR connectors

Patient Data Service

Secure patient data management and privacy protection.

Technologies: PostgreSQL, Redis, Vault
• Data anonymization
• Consent management
• Audit trails

Workflow Engine

Orchestrates complex clinical workflows and business processes.

Technologies: Temporal, Go, Apache Kafka
• Process automation
• Error handling
• State management

AI/ML Infrastructure

Model Lifecycle Management

Training Pipeline
Stack: Kubeflow, MLflow, DVC, Weights & Biases
  • • Automated data preprocessing
  • • Distributed training on GPUs
  • • Hyperparameter optimization
  • • Model versioning and lineage
Model Registry
Stack: MLflow Model Registry, Harbor
  • • Centralized model storage
  • • Version control and metadata
  • • Model approval workflows
  • • A/B testing framework

Inference Infrastructure

Model Serving
Stack: TensorFlow Serving, ONNX Runtime, Triton
  • • High-throughput inference
  • • Auto-scaling based on load
  • • Multi-model endpoints
  • • GPU acceleration support
Feature Store
Stack: Feast, Apache Kafka, Redis
  • • Real-time feature serving
  • • Feature versioning
  • • Training-serving consistency
  • • Feature monitoring

Data Architecture

Data Storage

Primary Database
PostgreSQL Cluster
  • • Multi-master replication
  • • Automatic failover
  • • Point-in-time recovery
  • • Encrypted at rest
Object Storage
Amazon S3 / MinIO
  • • Medical images & files
  • • Model artifacts
  • • Backup & archival
  • • Lifecycle policies

Data Processing

Stream Processing
Apache Kafka & Flink
  • • Real-time data ingestion
  • • Event sourcing
  • • Complex event processing
  • • Exactly-once semantics
Batch Processing
Apache Spark
  • • ETL pipelines
  • • Data analytics
  • • Model training data prep
  • • Historical analysis

Data Services

Search Engine
Elasticsearch
  • • Full-text search
  • • Clinical terminology
  • • Semantic search
  • • Analytics & reporting
Cache Layer
Redis Cluster
  • • Session management
  • • API response caching
  • • Real-time features
  • • Rate limiting

Security Architecture

Zero-Trust Network

┌─────────────────────────────┐
│        Internet             │
└────────────┬────────────────┘
             │
        ┌────▼────┐
        │   WAF   │ ← DDoS Protection
        └────┬────┘
             │
        ┌────▼────┐
        │   ALB   │ ← Load Balancing
        └────┬────┘
             │
    ┌────────▼────────┐
    │  API Gateway    │ ← Auth & Rate Limiting
    └────────┬────────┘
             │
    ┌────────▼────────┐
    │ Service Mesh    │ ← mTLS & Observability
    │  (Istio)        │
    └─────────────────┘
  • End-to-end encryption (TLS 1.3)
  • Mutual TLS between services
  • Network segmentation
  • Identity-based access control

Data Protection

Encryption Strategy
  • • AES-256 for data at rest
  • • Hardware Security Modules (HSM)
  • • Key rotation every 90 days
  • • Envelope encryption pattern
Privacy Controls
  • • Data anonymization pipelines
  • • Differential privacy
  • • Consent management
  • • Right to be forgotten
Audit & Compliance
  • • Immutable audit logs
  • • HIPAA compliance monitoring
  • • Data lineage tracking
  • • Automated compliance reporting

Deployment Patterns

Cloud-Native

Technologies: Kubernetes, Helm, ArgoCD
  • • Multi-cloud deployment
  • • Auto-scaling workloads
  • • GitOps workflows
  • • Blue-green deployments
  • • Canary releases

Hybrid Deployment

Technologies: Anthos, Arc, VPN Gateway
  • • On-premises + cloud
  • • Edge computing nodes
  • • Data locality compliance
  • • Federated identity
  • • Unified monitoring

Air-Gapped

Technologies: K3s, Harbor, Longhorn
  • • Completely isolated
  • • Local container registry
  • • Offline model updates
  • • Manual security patches
  • • Local data processing

Monitoring & Observability

Three Pillars of Observability

Metrics
Stack: Prometheus, Grafana, AlertManager
  • • Application performance metrics
  • • Infrastructure monitoring
  • • AI model performance
  • • Business metrics
Logging
Stack: ELK Stack, Fluentd, Loki
  • • Centralized log aggregation
  • • Structured logging
  • • Log correlation
  • • Audit trail
Tracing
Stack: Jaeger, OpenTelemetry
  • • Distributed tracing
  • • Request flow visualization
  • • Performance bottlenecks
  • • Error root cause analysis

AI/ML Monitoring

Model Performance
  • • Accuracy drift detection
  • • Prediction latency
  • • Feature drift monitoring
  • • Model bias detection
Data Quality
  • • Schema validation
  • • Data completeness checks
  • • Anomaly detection
  • • Data freshness monitoring
Business Impact
  • • Clinical outcome tracking
  • • User satisfaction metrics
  • • Cost per prediction
  • • ROI measurement